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In this paper, a geometrical and thermodynamical analysis of the global properties of the poten-
tial energy landscape of a minimalistic model of a polypeptide is presented. The global geometry
of the potential energy landscape is supposed to contain relevant information about the properties
of a given sequence of amino acids, that is, to discriminate between a random heteropolymer and a
protein. By considering the SH3 and PYP protein-sequences and their randomized versions it turns
out that in addition to the standard signatures of the folding transition - discriminating between
protein sequences of amino acids and random heteropolymer sequences - also peculiar geometric sig-
natures of the equipotential hypersurfaces in configuration space can discriminate between proteins
and random heteropolymers. Interestingly, these geometric signatures are the ”shadows” of deeper
topological changes that take place in correspondence with the protein folding transition. The pro-
tein folding transition takes place in systems with a small number of degrees of freedom (very far
from the Avogadro number) and in the absence of a symmetry-breaking phenomenon. Nevertheless,
seen from the deepest level of topology changes of equipotential submanifolds of phase space, the
protein folding transition fully qualifies as a phase transition.

PACS numbers: 87.15.-v; 02.40.-k

I. INTRODUCTION

The study of the Hamiltonian dynamical counterpart
of phase transitions (PTs) combined with the geometriza-
tion of Hamiltonian dynamics (where the natural mo-
tions are identified with geodesics of suitable Rieman-
nian manifolds) led to find that at the roots of the PTs
phenomena there are some peculiar changes of the topol-
ogy of certain submanifolds of phase space. More pre-
cisely, the relevant mathematical objects [1] are the po-
tential level sets (PLSs) ΣVN

v := {VN (q1, . . . , qN ) = v ∈
R} in configuration space, and, equivalently, the balls

{MVN
v = V −1

N ((−∞, v])}v∈R bounded by the ΣVN
v . Both

geometry and topology of these objects can affect mi-
croscopic dynamics and macroscopic thermodynamics of
the modeled physical system. In fact, when the ball
MVN

v=E = {(q1, . . . , qN ) ∈ R|VN (q1, . . . , qN ) < E} is en-
dowed with the metric tensor gJ = 2[E−V (q)]dqi⊗dqk ,
then its geodesics are the natural motions given by q̈i =
−∇iV (q), and the geometry of the manifold (MVN

E , gJ)
determines the properties of order and chaos of the micro-
scopic dynamics [1–4]. On the other hand, a relationship
also exists between macroscopic thermodynamics and the
topology of the same objects, MVN

v and ΣVN
v . For the lat-

ter objects this relationship is expressed by [1]

S(v) =
kB
N

log
1

N !

∫
Σ

VN
v

dσ

∥∇V ∥
≈ kB

N
log

[
vol(SN−1

1 )

N∑
i=0

bi(Σ
VN
v ) +

∫
Σ

VN
v

dσ
t̃(v)

N !

]
+

1

N
logR(v) , (1)
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where S is the configurational entropy, v is the potential
energy, and the bi(Σ

VN
v ) are the Betti numbers (in one-

to-one correspondence with topology) of the manifolds
ΣVN

v ; thus in square brackets the first term is of topolog-
ical meaning and the second term is a smooth function
of v as well as the term R(v). On the basis of Eq.(1)
one can infer that major topology changes with v of the
submanifolds ΣVN

v , associated with sharp changes of the
potential energy pattern of at least some of the bi(Σ

VN
v ),

can affect the v-dependence of the entropy SN (v) and
thus of its derivatives.

Therefore, at least for a broad class of physical systems,
it has been hypothesized that PTs stem from a suitable
change of the topology of the PLSs, ΣVN

v , and, equiva-
lently, of the manifolds MVN

v , when v, playing the role of
the control parameter, crosses a critical value vc. This
hypothesis is at the ground of a theoretical framework
composed of exactly solvable models [1, 5] and two the-
orems [6–9] stating that equilibrium PTs are necessarily
induced by suitable topological transitions in configura-
tion space. Actually, the main advantage of the topologi-
cal approach is to provide a deeper insight than those pro-
posed so far in the literature. More specifically, after Lan-
dau theory [10, 11], the emergence of PTs has been as-
sociated to a symmetry-breaking mechanism. However,
there are many examples of systems undergoing PTs in
the absence of a symmetry breaking and thus lacking an
order parameter. Some relevant examples are: Koster-
litz–Thouless transitions (after the Mermin–Wagner the-
orem) [12], systems with local gauge symmetries (after
Elitzur theorem) [13], liquid–gas transitions, transitions
in supercooled glasses and liquids, transitions in amor-
phous and disordered systems, folding transitions in ho-
mopolymers and proteins. Another important limitation
of the existing theories consists in the difficulty of pro-
viding a coherent definition of PTs in small-size systems,
that is, very far from the thermodynamic limit. In fact,
the difficulty is due to the so-called thermodynamic limit
dogma, a consequence of the Yang-Lee theorems [14, 15]
showing that the loss-of-analyticity of thermodynamic
observables - which characterizes PTs - is only possible
in the thermodynamic limit (N → ∞).

Therefore, transitional phenomena in systems with a
fixed number of constituents, i.e., intrinsically lacking
a thermodynamic limit, can hardly be given a defini-
tion consistent with the one for the systems admitting
a N → ∞ limit. This is for example the case of fila-
ment to globule transition in homopolymers and of the
protein folding transition. Only recently, M. Bachmann
proposed a consistent and powerful definition of PTs in
the microcanonical ensemble for finite-size systems [16–
18]. A complementary microcanonical classification of
PTs for systems admitting the thermodynamic limit has
been proposed in Refs. [13, 19, 20]. These classifications
are very useful tools for investigating the thermodynamic
properties of systems in the microcanonical ensemble in-
dependently of the size of a system. However these are es-
sentially phenomenological approaches seemingly calling

for further explanatory steps. In this context, the topo-
logical approach aims at providing a possible explanatory
step forward also on this point. In fact, phase transitions
that are experimentally observed in finite/small systems
are theoretically at odds with the thermodynamic limit
dogma, but while thermodynamic observables cannot dis-
play non-analytic energy, or temperature, patterns at fi-
nite N , this is not true from the topological viewpoint.
This is well evident in the case of systems for which un-
equivocally sharp signatures of a phase transition are dis-
played by an analytically computed topological invariant
(the Euler characteristic), as in the case of the XY-mf
model [21] and of the p-trig model [22].

The aim of the present work is twofold. On the one
side, we aim at applying the topological approach to PTs
occurring in systems with a constitutively small number
of degrees of freedom, that is, much smaller than the
Avogadro number. In fact, PTs are experimentally ob-
served also in nanoscopic and mesoscopic systems, that
is, at very small numbers of degrees of freedom, a circum-
stance which is theoretically at odds with the thermody-
namic limit dogma stemming from the Yang-Lee theory.
A representative example of PT in a small N system is
the protein folding transition. Therefore this is a reason
to tackle it as a tested for the topological description of
the origin of PTs in the case of a small number of degrees
of freedom.
On the other side protein folding is a very important
and challenging open question in molecular biology, an-
other reason for applying to this phenomenon the new
approach. Even though the present work has no pre-
tense to contribute yet the protein folding problem with
significant advancement - given also the simplistic model
used - the way of looking at the protein folding transition
proposed in our prospective work could provide an inter-
esting complementary method to existing ones, worthy
of further attention.

The well-known Anfinsen’s dogma [23] states that
for small globular proteins the sequence of amino acids
uniquely determines the native state (i.e., the compact
configuration the protein assumes in physiological con-
ditions). For this reason, understanding how the infor-
mation contained in the sequence is translated into the
three-dimensional native structure is at the core of the
protein folding problem. All the naturally selected pro-
teins generally fold to a uniquely determined native state,
but a generic polypeptide does not, and is considered a
random heteropolymer.

Following the line of Refs. [24, 25], instead of linking
the folding properties to the energy landscape by locating
the energy minima and the saddles joining them, or by
undertaking the folding funnel approach [26], we focus
on global properties of the energy landscape which can
be easily numerically computed through time averages
along dynamical trajectories.

In Section II we define the simplified model adopted
to describe the protein dynamics and provide informa-
tion about the numerical simulations carried on for two
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different proteins. In Section III we specify the kind of
observables computed by means of Molecular Dynamics
(MD) simulations. In Sections IV and V we discuss why
the signatures of the folding transition detected via ge-
ometrical observables probe deeper topological changes
of submanifolds of configuration space. In Sections VI
and VII the results of numerical simulations and their
meaning are discussed.

II. DEFINITION OF THE MODEL AND MD
CALCULATIONS

Two different proteins have been considered in this
work: SH3 and PYP. For both proteins we generated
a Cα-based Gō-model [27] via the SMOG2 [28] imple-
mentation, starting from the experimental structures ob-
tained from the Protein Data Bank (1FMK [29] for SH3
and 3PHY [30] for PYP). In this model, only the Cα

atom of every amino acid is considered and the model
potential is given by

U(Γ,Γ0) =
∑
bonds

Kr(r − r0)
2 +

∑
angles

Kθ(θ − θ0)
2 +

∑
dihedrals

K(n)
φ (1 + cos(n(φ− φ0)))+

+
∑

i<j−3

εnativeij

[
5

(
σij

rij

)12

− 6

(
σij

rij

)10
]
+
∑
i<j

εn-nat
(
σnn

rij

)12

(2)

where Γ0 is the initial experimental structure, and Γ is
the current system conformation; similarly, r0, θ0, and
φ0 are the reference values for all the bonds, angles and
dihedrals in the model, while r, θ, and φ are their value
in the conformation Γ. In our implementation the dihe-
dral potential is a sum of 2 terms for every 4 adjacent
Cα atoms, with periods n = 1 and n = 3. The force
constants for bonded interactions in our implementation
are Kr = 200ε/Å2, Kθ = 40ε/rad2, Kφ = ε, and ε = 1
kJ/mol. In non-bonded interaction, native contacts are
defined as all the Cα pairs that have a mutual distance
smaller than a threshold (here defined as 10 Å) in the ref-
erence configuration Γ0, and a distance along the chain of
3 amino acids. All the pairs that do not satisfy these con-
ditions are considered as non-native contacts and their
interaction is given only by a repulsive term [last term
in Eq. (2)]. σij is chosen so that the minimum of the

potential is at the distance rij measured in the reference

conformation Γ0, while σnn = 4Å. Energy terms for non-
bonded interaction are εnativeij = ε and εn-nat = ε.

We emphasize here that we chose two small globular
proteins consisting of a single domain to obtain with a
Gō-like model a satisfactory approximation of their fold-
ing transition. For more complex systems (disordered
and/or multi-domain proteins) a finer-grained and more
accurate representation would be needed.

To compare this protein-like model with a polymer
model that does not have a well-defined folding min-
imum, we generated 2 random heteropolymer models
starting from the initial Gō models. We removed from
the original potential almost all the bonded interaction
(keeping only the bonds between the residues), and we
scrambled the non-bonded interaction matrices, namely

URMD(Γ,Γ0) =
∑
bonds

Kr(r − r0)
2 +

∑
i<j−3

ε̃nativeij

[
5

(
σij

rij

)12

− 6

(
σij

rij

)10
]
+
∑
i<j

εn-nat
(
σnn

rij

)12

(3)

where ε̃nativeij is the scrambled interaction matrix.

We named the 2 systems obtained from the initial SH3
and PYP models RMDa and RMDb, respectively.

All the molecular dynamics simulations were then per-
formed using GROMACS [31] version 2019.6 (compiled in
double precision), with a Langevin integrator, with γ = 1
ps-1, and a time step of 0.5 fs. We initially performed a
short equilibration run (10 ns) to relax and thermalize
the structure at the target temperature. After this ini-

tial equilibration, we performed a 100 ns-long simulation
with the same parameters. To exhaustively explore the
folding curve, we performed a large number of simula-
tions at different temperatures (note that in a Gō model
energy units, and consequently temperature units, are
arbitrary), namely:

• For SH3 we performed 1 simulation every 0.25 K
between 135 and 161 K; every 1 K between 75 K
and 135 K and from 161 to 200 K; and every 2 K



4

from 200 K to 250 K for a total of 229 simulations.

• For PYP we performed 1 simulation every 0.25 K
between 145 and 160 K; every 1 K between 75 K
and 145 K and from 160 to 200 K; and every 2 K
from 200 K to 250 K for a total of 196 simulations.

• For the 2 random energy models, we performed 1
simulation every 5 K from 75 K to 250 K, for a
total of 36 simulations.

From these production runs we computed the gyration
radius using PLUMED 2.5 [32, 33], and all the other
observables needed using the GROMACS suite. From the
potential energies at different temperatures we computed
the system heat capacity (Cv) with a multiple histogram
method [34].

III. GEOMETRICAL SIGNATURES OF
TOPOLOGICAL CHANGES

In order to get information on the topology of the man-
ifolds of interest one has to resort to theorems in differen-
tial topology relating total geometric quantities of a given
manifold with its topology. With “total” it is meant the
integral of a given quantity over the whole manifold. One
of the theorems in differential topology that can be con-
structively used is Pinkall’s theorem which states that
[35]∫

Σv
V

(σ2(ki))
n dη ≥ V ol(Sn)

n∑
i=1

(
i

n− i

)n/2−i

bi(Σ
v
V ),

(4)
where dη := dµ/

∫
Σv

V
dµ and V ol(Sn) is the volume of

the unit n-sphere and, given the potential function of a
system, σ2(ki) can be easily computed (see Appendix C)
as

σ2(ki) =
1

(n− 1)2

(
Tr[(Hess V )2]

∥∇V ∥2
+

⟨∇V,Hess V ∇V ⟩2

∥∇V ∥6
− 2

∥Hess V ∇V ∥2

∥∇V ∥4

)
− 1

n− 1

(
△V

∥∇V ∥
− ⟨∇V,Hess V ∇V ⟩

∥∇V ∥3

)2 (5)

where △V and Hess V are, respectively, the Laplacian
and the Hessian of the potential function V .
Then, exploiting the equality in Ref. [12], we obtain:

⟨σ2(ki)⟩η =
[
V ol(Sn)

n∑
i=1

(
i

n− i

)n/2−i

bi(Σ
v
V )
] 2

n− r(Σv
V )

(6)

where r(Σv
V ) is a small remainder, we notice that the

dispersion of principal curvature is related to the sum of
Betti numbers.

Another theorem that can be used is Overholt’s theo-
rem which states that the range of variability of the scalar
curvature can be used to estimate the range of variability
of the sectional curvatures and it is given by [36]:

∆(sectional) ≥

[
vol(SN1 )

∑N
k=0 bk(Σ

v
V )

2 vol(Σv
V )

]2/N
. (7)

Hence, it turns out that the variations of the topology of
Σv

V detected by the Betti numbers can shape the poten-
tial energy profile of ∆(sectional). By being the scalar
curvature of a manifold, the sum of all the sectional
curvatures, thereby, the variance of the scalar curvature
R(Σv

V ) is

∆2(scal) =
⟨R2(Σv

V )⟩ − ⟨R(Σv
V )⟩2

N(N − 1)
≃ ∆(sectional), (8)

where ⟨·⟩ is the geometric average over the PLS and it will
be defined in the upcoming section. The scalar curvature
of any PLS can be written in terms of derivative of the
potential function, i.e.:

R(Σv
V ) =

(
△V

∥∇V ∥
− ⟨∇V,Hess V ∇V ⟩

∥∇V ∥3

)2

+

−
(
Tr[(Hess V )2]

∥∇V ∥2
+

⟨∇V,Hess V ∇V ⟩2

∥∇V ∥6
− 2

∥Hess V ∇V ∥2

∥∇V ∥4

) (9)

In the upcoming section, we discuss how to compute, through molecular dynamics simulations, the dispersion
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of the principal curvature and the variance of the scalar
curvature.

IV. AVERAGES OF GEOMETRIC
OBSERVABLES

In this section, we show how to observe a topology
change computing numerically the geometric average of
the dispersion of the principal curvature (5) and scalar
curvature (9) so as to prove Pinkall’s (6) and Overholt’s
(7) theorems. After Pinkall theorem, the relevant geo-
metric quantity is

⟨σ2(ki)⟩geo =

∫
Σv

V

σ2(ki) dµ∫
Σv

V

dµ

, (10)

that is, the average of the dispersion of the principal cur-
vatures on a given PLS, Σv

V . Instead, Overholt theorem

invokes the following geometric quantity

⟨Rn(Σv
V )⟩ =

∫
Σv

V

Rn(Σv
V )

dµ

∥∇V ∥∫
Σv

V

dµ

∥∇V ∥

. (11)

A proper combination of this quantity with n = 1, 2,
allows to compute ∆2(scal) which is a probe of the topo-
logical variations of the Σv

V . At a first glance, it is ap-
parent that these quantities can be directly computed in
the microcanonical ensemble since dµ/∥∇V ∥ is the mi-
crocanonical statistical measure, i.e., it is the natural er-
godic invariant measure for the microscopic Hamiltonian
dynamics. Thus, for any phase space-valued function, A,
invoking the ergodic theorem, the average in Eq. (11)
rewrites [19]:

⟨A⟩ = lim
t→∞

1

t

∫ t

0

A(τ) dτ. (12)

However, our MD simulations have been performed
through GROMACS software in the canonical ensemble.
This means that the numerical computations of averages
of the geometric observables should be performed evalu-
ating the observables along the solutions of the simula-
tions which is equivalent to compute canonical averages.
Hence, from our MD simulations, we have access to the
following average

⟨A⟩C(n, T ) =
1

Z(n, T )

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

A(Σv
V )

∥∇V ∥
dµ

)
dv̄, (13)

where the configurational canonical partition function
has been rewritten as follows:

Z(n, T ) = n

∫ ∞

0

e−nv̄/kBT

(∫
Σv

V

dµ

∥∇V ∥

)
dv̄, (14)

where dµ is the induced metric on the PLS, Σv
V , and

V̄ = nv̄, i.e., v̄ is the value of the potential per degrees
of freedom. Let ⟨σ2[ki,X(t),P (t)]⟩t be the time aver-
age of the dispersion of the principal curvatures obtained
evaluating Eq. (5) along the numerical trajectories in
our canonical simulations. Then, ⟨σ2⟩t, in turn, coin-
cides with the canonical average defined in Eq. (13) due
to the ergodic theorem. Hence, the best approximation
of Eq. (10) in terms of ⟨σ2⟩t can be obtained recasting
the microcanonical measure in Eq. (13) into the geomet-
ric measure. In practice, the numerator in Eq. (10) is
approximated by

⟨∥∇V ∥ σ2⟩C =
1

Z(n, T )

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

σ2 dµ

)
dv̄,

(15)

similarly, for the denominator we have

⟨∥∇V ∥⟩C =
1

Z(n, T )

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

dµ

)
dv̄,

(16)
Now, dividing Eq. (15) by (16), we get:

⟨∥∇V ∥ Λ2⟩C
⟨∥∇V ∥⟩C

=

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

Λ2 dµ

)
dv̄

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

dµ

)
dv̄

,

(17)
At this step, it is worth noting that, for large values of
n, the canonical measure concentrates around a given
potential level set Σv̄(T ), where v̄(T ) is the average po-
tential function per degree of freedom and so the largest
contribution to the canonical partition function is given
by Σv̄(T ) which is nothing but the equivalence of ensem-
bles.
Hence, this means that, heuristically, in the thermody-
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namic limit, the partition function reduces to

Z(n, T ) ≈ n e−nv̄(T )/kBT

∫
Σv̄(T )

dµΣv̄(T )

∥∇V ∥
, (18)

and the average in Eq. (17) reads:

⟨∥∇V ∥ Λ2⟩C
⟨∥∇V ∥⟩C

n→∞−→

∫
Σv̄(T )

Λ2 dµΣv̄(T )∫
Σv̄(T )

dµΣv̄(T )

≈ ⟨σ2(ki)⟩geo,

(19)
Of course, when the number of degrees of freedom is not
very large, the support of the measure in Eq. (17) is not
well concentrated, and we can expect some blurring of
the curves ⟨σ2(ki)⟩(v). It should be stressed that this
occurs since we are evaluating “microcanonical” observ-
ables (see Eqs. (10) and (11)) with “canonical” trajecto-
ries. This effect can be simply eliminated performing
molecular dynamics simulations in microcanonical en-
semble. As we shall see in the following section, the con-
centration around the average potential value v̄(T ) can
be observed comparing Figures 7 and 8 relative to the
SH3 protein and PYP protein, respectively, considering
that the number of degrees of freedom are nSH3 = 171 for
the SH3 protein and nPY P = 375 for the PYP protein. A
further contribution to the mentioned blurring can also
come from the quantity ⟨∥∇V ∥⟩C at the denominator.

Instead, the averages of the scalar curvature in Eq.
(11) are given by

⟨R⟩C(n, T ) =

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

R

∥∇V ∥
dµ

)
dv̄

∫ ∞

0

n e−nv̄/kBT

(∫
Σv

V

dµ

∥∇V ∥

)
dv̄

,

(20)
and for a large number of particles, we have:

⟨R⟩C(n, T )
n≫1−→

∫
Σv

V

R

∥∇V ∥
dµ∫

Σv
V

dµ

∥∇V ∥

≈ ⟨R⟩ (21)

As we shall see in the next section, the outcomes of ⟨R⟩(v)
are not blurred, and since the denominator ⟨∥∇V ∥⟩C is
here absent, this seems to confirm the above comment
on the role of this term in blurring the outcomes of the
geometric averages, rather than attributing the blurring
to an insufficient concentration of the statistical measure.

V. THERMODYNAMIC OBSERVABLES AND
METHODOLOGY

The thermodynamic and geometrical observables are
evaluated along the trajectories run at fixed tempera-
tures. Indicating with ⟨·⟩ time averages along the trajec-
tories, we analyze: (i) the radius of gyration Rgyr as a

function of the temperature T ; (ii) the specific heat at
constant volume

CV =
⟨E2

tot⟩ − ⟨Etot⟩2

N2kBT 2
, (22)

as a function of the temperature, where Etot is the total
energy and kB is the Boltzmann constant; (iii) the rela-
tion between the temperature T and the energy density
is

ϵ = kBT/2 + ⟨V ⟩/N , (23)

where we recall that V is the total potential field. The
units are the standard GROMACS ones, i.e., [T ] = K,

[Etot] = [V ] = kJ/mol, [Rgyr] = nm and [k̃B ] = kJ/mol
K. We analyze the src-Src homology 3 protein domain
(SH3, PDB code 1FMK) (see left-hand panel of Figure
1), of 57 amino acids; 2 random sequences of the same
57 amino acids (RDMa,b); and the photoactive yellow
protein (PYP, PDB code 2PYP) (see right-hand panel of
Figure 1) composed of 125 amino acids. We remark that
the simulations are run also for several random sequences
yielding very similar results and only two of them are re-
ported here for the sake of simplicity. The randomization
is implemented using the SH3 coarse grained potential
described in [37] and randomly permuting the parame-
ters involved in the model: this way, we can get a sort
of random heteropolymer starting from the good folding
sequence of SH3.
The simulation are performed using the GROMACS

software [38–43]. Averages and fluctuations are evalu-
ated over 2000 frames for each fixed temperature simula-
tion. The run temperatures are taken, after some tests,
in the folding range with an interval of 5K between each
trajectory.

VI. RESULTS

In Figure 2 the radius of gyration is reported for the
different sequences of the SH3 and PYP proteins, respec-
tively. It is evident that only the sequences of the good
folders SH3 and PYP exhibit the bifurcation pattern typ-
ical of the folding transition. In Figure 3 the specific heat
and the caloric curve are reported for the SH3 protein
and display the typical patterns of a phase transition.
Bachmann’s criterion [16, 17] identifies a phase transi-
tion point with the inflection point of the caloric curve.
In our case, the caloric curves are obtained by averaging
the total energy of the system, and, being the temper-
ature an error-free input parameter, after a sufficiently
long integration time, the error on the averaged value of
energy can be made arbitrarily small. In so doing, the
inflection point is very well located. The caloric curve
in the upper panel of Fig. 3 displays an inflection point
which is absent in the lower panel, again of Fig. 3, re-
porting the caloric curve of the randomized sequence of
the SH3 protein. In particular the inflection point of the
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FIG. 1: Cartoon representation of SH3 and PYP.

caloric curve is typical of a second order phase transition
as discussed in Refs. [16, 17]. In Figure 4 the specific
heat and the caloric curve are reported for the PYP pro-
tein and also in this case they display the typical pat-
terns of a phase transition. However, the pattern of the
caloric curve - in concordance with the sharp drop of the
gyration radius shown by Fig. 2 - could be compatible
with a first-order phase transition [16–18]. Remarkably,
the thermodynamic signatures of a phase transition, in-
dependently of its order, are lost in the case of the ran-
domized sequences of amino acids as shown in the same
figures.

In Fig. 5 the total scalar curvature and the total vari-
ance of the scalar curvature of the equipotential level sets
in configuration space are reported as functions of the
temperature, normalized to the folding transition tem-
perature, for the SH3 protein. Both quantities show a
kink in correspondence to the folding transition which
disappears in the randomized sequence. The same phe-
nomenology is shown in Figure 6 for the PYP protein. By
looking at Figures 5 and 6 where the geometrical quanti-
ties ⟨σR(Σv)⟩ and ⟨R(Σv)⟩ are reported, one is tempted
to identify inflection points for the SH3 and jumps for
the PYP. Thus a second order and a first order transi-
tion, respectively. However, even though the tempera-
ture patterns of these quantities are neat, these are nu-
merical outcomes and it is hard to make a clearcut as-

sessment. From a theoretical viewpoint, of course there
would be the possibility of inferring the order of the tran-
sition: Eq.(1) suggests that the behaviour of the sum of
the Betti numbers as a function of v affects the order of
the derivative of S(v) becoming singular, and thus the
order of the transition. But one would need the analytic
computation of quantities of topological meaning.
Finally, Figures 7 and 8 show the dispersions of the

principal curvatures of the equipotential level sets in the
configuration space for SH3 and PYP proteins and ran-
domized sequences, respectively. This quantity shows pe-
culiar patterns that are well evident when plotted as a
function of the value of potential energy per degree of
freedom. These patterns are less clear when plotted as a
function of temperature, although the presence of cusps
can be guessed by means of several polynomial fits of the
points below and above the folding transition tempera-
ture, respectively.
In order to understand what do we learn from the

patterns of the geometrical quantities reported as func-
tions of the potential energy and of temperature, let
us first consider that the shape of the specific heat de-
pends on the shape of the entropy according to the re-
lation Cv = −(∂S/∂E)2(∂2S/∂E2)−1 stemming from
Cv = (∂T (E)/∂E)−1 with T (E) = (∂S/∂E)−1. Then,
related with the formula reported in Eq. (1), we also
have [1]

SN (E) =
kB
N

log

∫
ΣN

E

dµ

∥∇H∥
(24)

≃ kB
N

log

[
vol(SN−1

1 )

N∑
i=0

bi(Σ
N
E ) + r1(E)

]
+ r2(E) ,

where r1(E), and r2(E) are smooth functions, bi(Σ
N
E ) are

the Betti numbers of the energy level sets, dµ is the mea-
sure on the level set, and SN−1

1 stands for a hypersphere
of unit radius. From this formula it can be understood
that some “abrupt” change in the topology of the energy
level sets can affect both the shape of the caloric curve
T = T (E) and of the specific heat through the energy
variation of SN (E). Now, the scalar curvature R is the
sum of sectional curvatures so that its variance σR con-
tains the variance of the sectional curvatures [13], so that
the quantity

∆(sec) >

[
vol(SN1 )

∑N
k=0 bk(ΣE)

2 vol(ΣE)

]2/N
(25)

in strict analogy with Eqs.(7) and (8), detects topology
changes of the energy level sets in phase space. Therefore,
the jumps in the patterns of the total scalar curvature
and the total variance of the scalar curvature reported in
Figures 5 and 6 just probe some kind of “abrupt” change
in the topology of the energy level sets. Similarly, and
complementary to this, the potential energy patterns of
the dispersion of the principal curvatures of the equipo-
tential level sets reported in Figures 7 and 8 probe some
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kind of ”abrupt” change in the topology of these sub-
manifolds of configuration space, and thus also of phase
space, after Pinkall’s theorem relating the dispersion of
the principal curvatures of a manifold with a weighted
sum of its Betti numbers as given in Eq. (6).
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dependence typical of the folding transition (upper
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identify the folding transition
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FIG. 3: (Color online) The specific heat and the caloric
curve for the SH3 protein show patterns typical of a

phase transition (upper panels). These features are lost
in the case of the randomized version of the correct

sequence of the SH3 protein (lower panels).
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in the case of the randomized version of the correct
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FIG. 5: (Color online) The total scalar curvature and
its variance, of equipotential level sets, are reported as
functions of temperature for the SH3 protein (upper

panels) and for its randomized sequence of amino acids
(lower panels).
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A. Remark

As already mentioned throughout this paper, the pre-
cise relationship between geometry and topology is given
by theorems in differential topology but only a few num-
ber of them can be constructively used (essentially the
Gauss–Bonnet–Hopf, the Chern–Lashof, and Pinkall the-
orems [35]). However, sharp changes of various geomet-
rical observables signaling PTs have been also reported
within a purely geometrical theory [20, 44] — based on
the work in [45] - also in the absence of any known the-
orem connecting geometry and topology. Sharp changes
of geometry of the leaves of a family of manifolds foli-
ating configuration space can be generically supposed to
stem from their topological changes even when this fact
cannot be proved. Anyway, the use of simple geometrical
observables, easier to compute with respect to the Gauss-
Kronecker curvature or with respect to the dispersion of
principal curvatures, can be of practical interest to detect
PTs in the absence of symmetry-breaking or in small N
systems. On the other side, recent constructive methods
developed in algebraic topology, namely persistent ho-
mology [46] in the framework of Topological Data Anal-
ysis (TDA) [47], provide a different strategy to construc-
tively detect the topological origin of phase transitions
[48]. TDA and persistent homology have recently been
used also in the context of protein folding [49] to cap-
ture the formation of tertiary structures thus providing
a topological approach to the dynamics of protein fold-
ing. This is a complementary problem to the “static” de-
scription of protein folding, seen as a phase transition at
equilibrium that occurs as a control parameter changes.

VII. CONCLUSIONS

By considering a minimalistic model of the SH3 and
PYP proteins, besides the standard signatures of the
folding transition, the computation of suitable geometric
quantities of the equipotential hypersurfaces in configura-
tion space and of the energy hypersurfaces in phase space
of these molecules, respectively, allows to probe topolog-
ical changes of both families of hypersurfaces. The com-
putation of the same geometric quantities for randomized
versions of the correct sequences of the SH3 and PYP
proteins yielded monotonic patterns as functions of the
potential energy density, or of the total energy density,
manifestly discriminating between proteins and random
heteropolymers. Remarkably, the peculiar geometric sig-
natures found in correspondence with the protein folding
transition are the ”shadows” of some peculiar and sharp
topological change of the mentioned submanifolds of con-
figuration space and of phase space. The protein folding
transition takes place in systems with a small number of
degrees of freedom (very far from the Avogadro number)
and in the absence of a symmetry-breaking phenomenon,
however, considered from this topological perspective,
the protein folding transition fully qualifies as a phase

transition.
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Appendix A: Topological theory of phase transitions
in a nutshell

Let us sketchily present the basic conceptual origin of
the topological theory of phase transitions. The the-
ory stems from the geometrization of Hamiltonian dy-
namics which proceeds as follows. Given a generic sys-
tem of N degrees of freedom described by a Hamilto-

nian H = 1
2

∑N
i=1 p

2
i + V (q1, . . . , qN ) , or equivalently by

the corresponding Lagrangian function L = 1
2

∑N
i=1 q̇

2
i −

V (q1, . . . , qN ) , its dynamics can be identified with a
geodesic flow of an appropriate Riemannian differentiable
manifold. This differential geometric framework is given
by configuration space ME = {q ∈ RN |V (q) < E} en-
dowed with the non-Euclidean metric of components [1]
gij = 2[E − V (q)]δij , whence the infinitesimal arc ele-
ment ds2 = 2[E − V (q)]2dqi dq

i; then Newton equations
are retrieved from the geodesic equations

d2qi

ds2
+ Γi

jk

dqj

ds

dqk

ds
= 0 ,

where Γi
jk are the Christoffel connection coefficients of

the manifold. Then, in this context, the natural ques-
tion is whether the mechanical manifolds (ME , g) un-
dergo some peculiar geometrical change when E crosses
a critical value Ec that corresponds to a phase transi-
tion. And it has been discovered that this is actually
the case [1]. Moreover, the peculiar geometrical changes
associated with phase transitions were discovered to be
also the effects of deeper topological changes of the po-
tential level sets ΣVN

v := {VN (q1, . . . , qN ) = v ∈ R}
in configurations space, and, equivalently, of the balls
{MVN

v = V −1
N ((−∞, v])}v∈R bounded by the ΣVN

v . In
other words, given a Hamiltonian system undergoing a
phase transition, let vc = vc(Ec) be the average poten-
tial energy corresponding to the phase transition point,
a topological change means that the manifolds ΣVN

v<vc

and ΣVN
v>vc are not diffeomorphic, that is, they cannot be
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transformed one into the other with a differentiable ap-
plication with differentiable inverse. Topological changes
of these manifolds are related with the presence of criti-
cal points of the potential function V (q) in configuration
space. To get an intuitive idea of the relationship be-
tween critical points of a function in a given space and
the topology of its level sets, let us consider a low di-
mensional and intuitive case. Given a smooth function
f , bounded below, such that f : RN → R. Its level sets
Σu = f−1(u) are diffeomorphically transformed one into
the other by the flow [50]

dx

du
=

∇f

∥∇f∥2
,

where x ∈ RN , i.e., the points of a hypersurface Σu0
with

u0 ∈ [a, b] ⊂ R, are mapped by this flow to the points
of another Σu1

with u1 ∈ [a, b], provided that ∇f never
vanishes in the interval [a, b]. In other words, if in the
interval [a, b] the function f has no critical points, all the
level sets Σu = f−1(u), with u ∈ [a, b], have the same
topology. Conversely, the appearance of critical points
of f at some critical value uc breaks the diffeomorphic-
ity among the Σu<uc

and Σu>uc
. This is illustrated by

one of the simplest possible examples in Figure 9. A sys-
tematic study is developed within Morse theory of the
relationship between topological properties of a manifold
and the critical points of a suitable class of real-valued
functions (Morse functions) defined on it. In particular, if
f ≡ V , Morse theory tells us that the existence of critical
points of V is associated with topological changes of the
hypersurfaces {Σv}v∈R, and also of the {Mv}v∈R, pro-
vided that V is a good Morse function (that is, bounded
below, with no vanishing eigenvalues of its Hessian ma-
trix). In general, finding either analytically or numeri-
cally all the critical points of a potential V (q) is a very
hard task, often an unfeasible one. Thus in order to get
information on the topology of the manifolds of interest
one has to resort to the available theorems in differen-
tial topology, like the Chern-Lashof theorem mentioned
in the next appendix, or the Pinkall theorem used in the
main text. These theorems relate some total (that is in-
tegrated over the whole manifold) geometric property of
a manifold with some information on its topology. Note
that Morse indexes µk(M) of a manifold M count the
number of critical points of degree k (the number of neg-
ative eigenvalues of the Hessian of the Morse function).
Betti numbers are related with Morse indexes by the in-
equalities µk(M) ≥ bk(M). The bk(M) are dimensions of
some groups (homology and cohomology of M) invariant
under diffeomorphisms of M .

FIG. 9: The function f is here the height of a point of
the bended cylinder with respect to the ground. In P1

it is df = 0. The level sets Σu = f−1(u) below this
critical point are circles, whereas above are the union of
two circles. The manifolds Mu = f−1((−∞, u]) are disks
for u < uc and cylinders for u > uc

Appendix B: Derivation of Equation (1)

In this appendix, we sketch the proof of formula (1).
Any details about the rigorous proof can be found in Ref.
[1].
We note that the relation in Eq. (1) relates thermo-
dynamic entropy, defined in the microcanonical configu-
rational ensemble, with quantities of topological mean-
ing (the Morse indexes) of the configuration-space sub-
manifolds Mv = V −1

N ((−∞, v]) = {q = (q1, . . . , qN ) ∈
RN |VN (q) ≤ v}.
Let us consider the definition of the configurational mi-
crocanonical entropy SN (v) (kB = 1)

SN (v) =
1

N
log ΩN (v) , (B1)

with

ΩN (v) =
1

N !

∫
Σv

dσ

∥∇VN∥
, (B2)

where Σv is the potential level set (PLS) defined by
ΣVN

v := {q ∈ RN |VN (q1, . . . , qN ) = v ∈ R}. By ex-
ploiting Federer’s derivation formula:

dk

dvk

∫
Σv

α dσ =

∫
Σv

Ak(α) dσ, (B3)

where α is any configuration space-valued function and

A(α) :=
1

∥∇VN∥
∇ ·
(
α

∇VN

∥∇VN∥

)
, (B4)

Eq. (B2) reduces to

dΩN

dv
(v) =

1

N !

∫
Σv

M∗

∥∇VN∥
dσ

∥∇VN∥
+O

(
1

N

)
. (B5)
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where we defined M∗ := ∇(∇VN/∥∇VN∥). Now, inte-
grating (B5) and then, at large N , considering that the
volume measure dµ := dσ/∥∇VN∥ concentrates on the
boundary Σv, we get:

ΩN (v) =
1

N !

∫
Σv

M∗

∥∇VN∥
dµ ≃ δv

N !
⟨∥∇VN∥−1⟩

∫
Σv

M∗dµ

(B6)
where δv is the length of a small energy interval around
the value v and where we have used that ∥∇VN∥ is posi-
tive and only very weakly varying at large N . By means
of Hölder’s inequality for integrals we get∫

Σv

M∗dµ ≤
(∫

Σv

|M∗|N dµ

) 1
N
(∫

Σv

dµ

)N−1
N

(B7)

the sign of equality being better approached when M∗ is
everywhere positive. Then, by making use of Eqs. (B2)
and (B6), we have

ΩN (v) ≤ [Ων(v)]
N−1
N

(
1

N !

∫
Σv

|M∗|dµ
) 1

N δv

⟨∥∇VN∥⟩
,

(B8)
and introducing a suitable deformation factor d(v), we
can reach the following equality

ΩN (v) =
[d(v)]N (δv)N

⟨∥∇VN∥⟩2N
1

N !

∫
Σv

|M∗|N dµ. (B9)

Noticing that M∗ is proportional to the mean curvature,
and being the latter the sum of the principal curvatures,
{κ}i∈N , we can write

(κ1 + . . .+ κN )N = (ϵ0|κ1 + . . .+ κN |)N

= |κ1|N + . . .+ |κN |N + t(v)
(B10)

where t(v) contains all the terms of the multinomial ex-
pansion that one have passing from the second to the
third equality but that one with n1 = n2 = . . . = nρ = 1.
Then, we also defined ϵ0 = sign(κ1 + . . . + κN ). Now,
applying the multinomial expansion (ρ ∈ N):

(x1 + . . .+ xρ)
ρ =

∑
{ni},

∑
nk=ρ

ρ!

n1! . . . nρ!
xn1
1 . . . xnρ

ρ ,

(B11)
Recalling that the Gauss-Kronecker curvature of Σv is

KG =
∏N

i=1 κi we get

|M∗|N ≈ N !|KG|+ t̃(v), (B12)

and we obtain

ΩN (v) ≈ [d(v)]N (δv)N

⟨∥∇VN∥⟩2N

∫
Σv

(
|KG|+

t̃(v)

N !

)
dσ, (B13)

where, again, we have disregard the term ∥∇VN∥−1 in
the integration measure since it is very weakly varying

at large N . Finally, according to the Chern–Lashof the-
orem, we can rewrite∫

Σv

|KG| dσ =
1

2
vol(SN−1

1 )

N∑
i=0

µi(Σv), (B14)

where µi(Σv) are the Morse indexes of Σv.
Finally, the entropy per degree of freedom reads as

S(v) =
kB
N

log ΩN (v)

=
1

N
log

[
vol(SN−1

1 )

N∑
i=0

µi(Σv) +

∫
Σv

dσ
t̃(v)

N !

]

+
1

N
log

[d(v)]N (δv)N

⟨∥∇V ∥⟩2N
. (B15)

The meaning of (B15) is better understood if we consider
that the Morse indexes µi(M) of a differentiable manifold
M are related to the Betti numbers bi(M) of the same
manifold by the inequalities

µi(M) ≥ bi(M) . (B16)

At large dimension we can safely replace (B16) with
µi(M) ≈ bi(M).
Equation (B15), rewritten as

S(v) ≈ kB
N

log

[
vol(SN−1

1 )

N∑
i=0

bi(Σv) +

∫
Σv

dσ
t̃(v)

N !

]

+
1

N
log

[d(v)]N (δv)N

⟨∥∇V ∥⟩2N
, (B17)

links topological properties of the microscopic phase
space with the macroscopic thermodynamic potential
S(v).

Appendix C: Dispersion of principal curvature and
scalar curvature

The Weingarten operator is a tensor containing the
most relevant information about the extrinsic geometry
of a hypersurface such as Σv

V and it is defined by [12, 44,
45]:

Wν(X) = ∇Xν, (C1)

where ν is the unit normal vector to the hypersurface

ν =
∇V

∥∇V ∥
(C2)

whereas X is any vector tangent to Σv
V and ∇ :=

(∂q1 , . . . , ∂qn) is the gradient operator. The topological
observables that we want to compute are the dispersion
of the principal curvatures, σ(ki)

2, and the scalar curva-
ture, R, of Σv

V .
The dispersion of principal curvatures is defined by [12]:

σ(ki)
2 =

Tr[W2
ν ]

n− 1
− (Tr[Wν ])

2

(n− 1)2
(C3)
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whereas the scalar curvature is [51]:

RΣv
V
= Tr[Wν ]

2 − Tr[W2
ν ] (C4)

Although, Eqs. (C3) and (C4) seem to be just formal
relations, it can be shown [44, 45, 51] that they simply
correspond to specific combinations of derivatives of the
potential function. The trace is

Tr[Wν ] =
△V

∥∇V ∥
− ⟨∇V,Hess V ∇V ⟩

∥∇V ∥3 (C5)

where △V and Hess V are, respectively, the Laplacian
and the Hessian of the potential function V whereas the
trace of the square of the Weingarten operator is [12, 44,

45]:

Tr[W2
ν ] =

Tr[(Hess V )2]

∥∇V ∥2
+

⟨∇V,Hess V ∇V ⟩2

∥∇V ∥6

− 2
∥Hess V ∇V ∥2

∥∇V ∥4
.

(C6)

It should be stressed that Eqs. (C5) and (C6) can be
easily computed in a molecular dynamics simulation. In
fact, it requires to know the forces acting between all the
particles composing the system and the Hessian of the
potential function. It is apparent that Fi := ∇qiV and
Hess Vij = ∇qi∇qjV are well-posed quantities that can
be easily defined in a simulation.
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